Month: February 2022

RMME Instructor, Ummugul Bezirhan, Earns 2022 Dissertation Prize!

Congratulations to RMME instructor, Ummugul Bezirhan! She recently earned the Psychometric Society’s 2022 Dissertation Prize for her research entitled, “Conditional dependence between response time and accuracy in cognitive diagnostic models”. She will present this work as a keynote speaker at the upcoming International Meeting of the Psychometric Society (IMPS), which will be held from July 11-15, 2022, at the University of Bologna, in Bologna, Italy. See this Psychometric Society announcement for more information.

We are so thrilled to congratulate Dr. Bezirhan on this fantastic accomplishment–congratulations, Gul!

 

RESCHEDULED RMME/STAT Colloquium (3/4): Donald Hedeker, “Shared Parameter Mixed-Effects Location Scale Models for Intensive Longitudinal Data”

RMME/STAT Joint Colloquium

Shared Parameter Mixed-Effects Location Scale Models for Intensive Longitudinal Data

Dr. Donald Hedeker
University of Chicago

Friday, March 4, at 3:00PM ET

https://uconn-cmr.webex.com/uconn-cmr/j.php?MTID=m6944095dfb2736dba214a9c6f6397805

Intensive longitudinal data are increasingly encountered in many research areas. For example, ecological momentary assessment (EMA) and/or mobile health (mHealth) methods are often used to study subjective experiences within changing environmental contexts. In these studies, up to 30 or 40 observations are usually obtained for each subject over a period of a week or so, allowing one to characterize a subject’s mean and variance and specify models for both. In this presentation, we focus on an adolescent smoking study using EMA where interest is on characterizing changes in mood variation. We describe how covariates can influence the mood variances and also extend the statistical model by adding a subject-level random effect to the within-subject variance specification. This permits subjects to have influence on the mean, or location, and variability, or (square of the) scale, of their mood responses. The random effects are then shared in a modeling of future smoking levels. These mixed-effects location scale models have useful applications in many research areas where interest centers on the joint modeling of the mean and variance structure.

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab