Upcoming RMME/STAT Colloquium (11/5): Jerry Reiter, “How Auxiliary Information Can Help Your Missing Data Problem”

RMME/STAT Joint Colloquium

How Auxiliary Information Can Help Your Missing Data Problem

Dr. Jerry Reiter
Duke University

Friday, November 5th, at 12:00PM ET

https://uconn-cmr.webex.com/uconn-cmr/j.php?MTID=m86ce051dbd968c3317ff09c343d31f40

Many surveys (and other types of databases) suffer from unit and item nonresponse. Typical practice accounts for unit nonresponse by inflating respondents’ survey weights, and accounts for item nonresponse using some form of imputation. Most methods implicitly treat both sources of nonresponse as missing at random. Sometimes, however, one knows information about the marginal distributions of some of the variables subject to missingness. In this talk, I discuss how such information can be leveraged to handle nonignorable missing data, including allowing different mechanisms for unit and item nonresponse (e.g., nonignorable unit nonresponse and ignorable item nonresponse). I illustrate the methods using data on voter turnout from the Current Population Survey.

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab